Dom-uslugi66.ru

Бюро Домашних Услуг

Правильный многогранник

Додекаэдр

Правильный многогранник или платоново тело — это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией.

Содержание

Определение

Многогранник называется правильным, если:

  1. он выпуклый;
  2. все его грани являются равными правильными многоугольниками;
  3. в каждой его вершине сходится одинаковое число рёбер.

Список правильных многогранников

Существует всего пять правильных многогранников:

Изображение Правильный многогранник Число сторон у грани Число рёбер, примыкающих к вершине Число вершин Число рёбер Число граней Тип пространственной симметрии
Тетраэдр 3 3 4 6 4 Th
Октаэдр 3 4 6 12 8 Oh
Икосаэдр 3 5 12 30 20 Ih
Гексаэдр или куб 4 3 8 12 6 Oh
Додекаэдр 5 3 20 30 12 Ih

Название каждого многогранника происходит от греческого названия количества его граней и слова "грань".

Комбинаторные свойства

  • Отношение количества вершин правильного многогранника к количеству рёбер одной его грани равно отношению количества граней этого же многогранника к количеству рёбер, выходящих из одной его вершины. У тетраэдра это отношение равно 4:3, у гексаэдра и октаэдра — 2:1, а у додекаэдра и икосаэдра — 4:1.
  • Правильный многогранник может быть комбинаторно описан символом Шлефли {p, q}, где:
    p — число сторон каждой грани;
    q — число рёбер, сходящихся в каждой вершине.
Символы Шлефли для правильных многогранников приведены в следующей таблице:
Многогранник Вершины Рёбра Грани Символ Шлефли
тетраэдр 4 6 4 {3, 3}
куб 8 12 6 {4, 3}
октаэдр 6 12 8 {3, 4}
додекаэдр 20 30 12 {5, 3}
икосаэдр 12 30 20 {3, 5}
  • Другой комбинаторной характеристикой многогранника, которую можно выразить через числа p и q, является общее количество вершин (В), рёбер (Р) и граней (Г). Поскольку любое ребро соединяет две вершины и лежит между двумя гранями, выполняются соотношения:
Из этих соотношений и формулы Эйлера можно получить следующие выражения для В, Р и Г:

Геометрические свойства

Углы

С каждым правильным многогранником связаны определённые углы, характеризующие его свойства. Двугранный угол между смежными гранями правильного многогранника {p, q} задаётся формулой:

Иногда удобнее пользоваться выражением через тангенс:

где принимает значения 4, 6, 6, 10 и 10 для тетраэдра, куба, октаэдра, додекаэдра и икосаэдра соответственно.

Угловой дефект при вершине многогранника – это разность между 2π и суммой углов между рёбрами каждой грани при этой вершине. Дефект при любой вершине правильного многогранника:

По теореме Декарта, он равен делённым на число вершин (т.е. суммарный дефект при всех вершинах равен ).

Трёхмерным аналогом плоского угла является телесный угол. Телесный угол Ω при вершине правильного многогранника выражается через двугранный угол между смежными гранями этого многогранника по формуле:

Телесный угол, стягиваемый гранью правильного многогранника, с вершиной в центре этого многогранника, равен телесному углу полной сферы ( стерадиан), делённому на число граней. Он также равен угловому дефекту дуального к данному многогранника.

Различные углы правильных многогранников приведены в следующей таблице. Числовые значения телесных углов даны в стерадианах. Константа – золотое сечение.

Многогранник Двугранный угол
θ
Плоский угол между рёбрами при вершине Угловой дефект (δ) Телесный угол при вершине (Ω) Телесный угол, стягиваемый гранью
тетраэдр 70.53° 60° π π
куб 90° 1 90°
октаэдр 109.47° √2 60°, 90°
додекаэдр 116.57° 108°
икосаэдр 138.19° 60°, 108°

Радиусы, площади и объёмы

С каждым правильным многогранником связаны три концентрические сферы:

  • Описанная сфера, проходящая через вершины многогранника;
  • Срединная сфера, касающаяся каждого его ребра в середине;
  • Вписанная сфера, касающаяся каждой его грани в её центре.

Радиусы описанной () и вписанной () сфер задаются формулами:

где θ - двугранный угол между смежными гранями многогранника. Радиус срединной сферы задаётся формулой:

где h - величина описанная выше, при определении двугранных углов (h = 4, 6, 6, 10 или 10). Отношения описанных радиусов к вписанным радиусам симметрично относительно p и q:

Площадь поверхности S правильного многогранника {p, q} вычисляется, как площадь правильного p-угольника, умноженная на число граней Г:

Объём правильного многогранника вычисляется, как умноженный на число граней объём правильной пирамиды, основанием которой служит правильный p-угольник, а высотой — радиус вписанной сферы r:

Приведённая таблица содержит список различных радиусов, площадей поверхностей и объёмов правильных многогранников. Значение длины ребра a в таблице приравнены к 2.

Многогранник
(a = 2)
Радиус вписанной сферы (r) Радиус срединной сферы (ρ) Радиус описанной сферы (R) Площадь поверхности (S) Объём (V)
тетраэдр
куб
октаэдр
додекаэдр
икосаэдр

Константы φ и ξ задаются выражениями

Среди правильных многогранников как додекаэдр, так и икосаэдр представляют собой лучшее приближение к сфере. Икосаэдр имеет наибольшее число граней, наибольший двугранный угол и плотнее всего прижимается к своей вписанной сфере. С другой стороны, додекаэдр имеет наименьший угловой дефект, наибольший телесный угол при вершине и максимально заполняет свою описанную сферу.

История

Правильные многогранники известны с древнейших времён. Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита, в Шотландии, как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных многогранников.

В значительной мере правильные многогранники были изучены древними греками. Некоторые источники (такие как Прокл Диадох) приписывают честь их открытия Пифагору. Другие утверждают, что ему были знакомы только тетраэдр, куб и додекаэдр, а честь открытия октаэдра и икосаэдра принадлежит Теэтету Афинскому, современнику Платона. В любом случае, Теэтет дал математическое описание всем пяти правильным многогранникам и первое известное доказательство того, что их ровно пять.

Правильные многогранники характерны для философии Платона, в честь которого и получили название «платоновы тела». Платон писал о них в своём трактате Тимей (360г до н. э.), где сопоставил каждую из четырёх стихий (землю, воздух, воду и огонь) определённому правильному многограннику. Земля сопоставлялась кубу, воздух — октаэдру, вода — икосаэдру, а огонь — тетраэдру. Для возникновения данных ассоциаций были следующие причины: жар огня ощущается чётко и остро (как маленькие тетраэдры); воздух состоит из октаэдров: его мельчайшие компоненты настолько гладкие, что их с трудом можно почувствовать; вода выливается, если её взять в руку, как будто она сделана из множества маленьких шариков (к которым ближе всего икосаэдры); в противоположность воде, совершенно непохожие на шар кубики составляют землю, что служит причиной тому, что земля рассыпается в руках, в противоположность плавному току воды. По поводу пятого элемента, додекаэдра, Платон сделал смутное замечание: «…его бог определил для Вселенной и прибегнул к нему в качестве образца». Аристотель добавил пятый элемент — эфир и постулировал, что небеса сделаны из этого элемента, но он не сопоставлял его платоновскому пятому элементу.

Евклид дал полное математическое описание правильных многогранников в последней, XIII книге Начал. Предложения 13—17 этой книги описывают структуру тетраэдра, октаэдра, куба, икосаэдра и додекаэдра в данном порядке. Для каждого многогранника Евклид нашёл отношение диаметра описанной сферы к длине ребра. В 18-м предложении утверждается, что не существует других правильных многогранников. Андреас Шпейзер отстаивал точку зрения, что построение пяти правильных многогранников является главной целью дедуктивной системы геометрии в том виде, как та была создана греками и канонизирована в «Началах» Евклида[1]. Большое количество информации XIII книги «Начал», возможно, взято из трудов Теэтета.

В XVI веке немецкий астроном Иоганн Кеплер пытался найти связь между пятью известными на тот момент планетами Солнечной системы (исключая Землю) и правильными многогранниками. В «Тайне мира», опубликованной в 1596 году, Кеплер изложил свою модель Солнечной системы. В ней пять правильных многогранников помещались один в другой и разделялись серией вписанных и описанных сфер. Каждая из шести сфер соответствовала одной из планет (Меркурию, Венере, Земле, Марсу, Юпитеру и Сатурну). Многогранники были расположены в следующем порядке (от внутреннего к внешнему): октаэдр, за ним икосаэдр, додекаэдр, тетраэдр и, наконец, куб. Таким образом, структура Солнечной системы и отношения расстояний между планетами определялись правильными многогранниками. Позже от оригинальной идеи Кеплера пришлось отказаться, но результатом его поисков стало открытие двух законов орбитальной динамики — законов Кеплера, — изменивших курс физики и астрономии, а также правильных звёздчатых многогранников (тел Кеплера-Пуансо).

В больших размерностях

  • Во всех пространствах размерности n > 4 существует только 3 типа правильных многогранников: n-мерный симплекс, n-мерный октаэдр и n-мерный куб (гиперкуб).

См. также

Примечания

  1. Герман Вейль. «Симметрия». Перевод с английского Б. В. Бирюкова и Ю. А. Данилова под редакцией Б. А. Розенфельда. Издательство «Наука». Москва. 1968. стр. 101

Ссылки

  • Смирнов Е. Ю. Группы Кокстера и правильные многогранники // Летняя школа «Современная математика». — Дубна, 2008.
  • Weisstein, Eric W. Platonic Solids (англ.) на сайте Wolfram MathWorld.
  • Фанаты математики/геометрия. (англ.)
  • Бумажные модели правильных многогранников. (англ.)
  • Наука/геометрия/платоновы и архимедовы тела. (англ.)
  • Платоновы, Архимедовы тела, призмы, тела Кеплера-Пуансо и усечённые тела Кеплера-Пуансо. (англ.)
  • Веннинджер Магнус. Модели многогранников. — Москва: Мир, 1974. — 236 с.
  • Гончар В. В. Модели многогранников. — Москва: Аким, 1997. — 64 с. — ISBN 5-85399-032-2
  • Гончар В. В., Гончар Д. Р. Модели многогранников. — Ростов-на-Дону: Феникс, 2010. — 143 с. — ISBN 978-5-222-17061-8
  • Многогранники Волшебные грани - наборы для сборки моделей многогранников. — Москва: Многогранники, 2012. — С. 20. (рус.)


Правильный многогранник.

© 2023 dom-uslugi66.ru, Россия, Ангарск, ул. Набережная 59, +7 (3951) 35-50-52