Dom-uslugi66.ru

Бюро Домашних Услуг

Сила Кориолиса

Перейти к: навигация, поиск
При вращении диска более далёкие от центра точки движутся с большей касательной скоростью, чем менее далёкие (группа чёрных стрелок вдоль радиуса). Переместить некоторое тело вдоль радиуса так, чтобы оно оставалось на радиусе (синяя стрелка из положения «А» в положение «Б») можно, увеличив скорость тела, то есть придав ему ускорение. Если система отсчёта вращается вместе с диском, то видно, что тело «не хочет» оставаться на радиусе, а «пытается» уйти влево — это и есть сила Кориолиса.
Траектории шарика при движении по поверхности вращающейся тарелки в разных системах отсчета (вверху — в инерциальной, внизу — в неинерциальной, вращающейся вместе с тарелкой).

Си́ла Кориоли́са — одна из сил инерции, существующая в неинерциальной системе отсчёта из-за вращения и законов инерции, проявляющаяся при движении в направлении под углом к оси вращения.

Названа по имени французского учёного Гюстава Гаспара Кориолиса, впервые описавшего её в статье, опубликованной в 1835 году[1][2]. Иногда высказываются мнения, что первым математическое выражение для силы получил Пьер-Симон Лаплас в 1775 году[3], а эффект отклонения движущихся объектов во вращающихся системах отсчёта был описан Джованни Баттиста Риччоли и Франческо Мария Гримальди в 1651 году[4].

Причина появления силы Кориолиса — в кориолисовом (поворотном) ускорении. В инерциальных системах отсчёта действует закон инерции, то есть, каждое тело стремится двигаться по прямой и с постоянной скоростью. Если рассмотреть движение тела, равномерное вдоль некоторого вращающегося радиуса и направленное от центра, то станет ясно, что чтобы оно осуществилось, требуется придавать телу ускорение, так как чем дальше от центра, тем должна быть больше касательная скорость вращения. Это значит, что с точки зрения вращающейся системы отсчёта, некая сила будет пытаться сместить тело с радиуса.

Если вращение происходит по часовой стрелке, то двигающееся от центра вращения тело будет стремиться сойти с радиуса влево. Если вращение происходит против часовой стрелки — то вправо.

Определение

Пусть имеются две системы отсчёта, одна из которых инерциальная, а другая () движется относительно первой произвольным образом и в общем случае является неинерциальной. Будем также рассматривать движение произвольной материальной точки массы . Её ускорение по отношению к первой системе отсчёта обозначим , а по отношению ко второй — .

Связь между ускорениями и следует из теоремы Кориолиса (см. ниже):

где — перено́сное ускорение, а — ускорение Кориолиса (кориолисово ускорение, поворотное ускорение). Напомним, что переносным ускорением называют ускорение той точки системы относительно системы , в которой в данный момент находится рассматриваемая материальная точка[5].

После умножения на массу точки и учёта второго закона Ньютона , данное соотношение можно представить в виде

Величину называют переносной силой инерции, а величину — силой Кориолиса (кориолисовой силой). Обозначив их и соответственно, можно записать

Полученное выражение выражает основной закон динамики для неинерциальных систем отсчёта.

Из кинематики известно, что

где — угловая скорость вращения неинерциальной системы отсчёта , — скорость движения рассматриваемой материальной точки в этой системе отсчёта; квадратными скобками обозначена операция векторного произведения. С учётом этого для силы Кориолиса выполняется

Замечания

  1. Следует иметь в виду, что, согласно принятой в русскоязычной литературе терминологии, кориолисово ускорение материальной точки — это часть её ускорения в инерциальной системе отсчёта [6][7]. Этим оно отличается, например, от центробежного ускорения, возникающего в неинерциальной системе отсчёта .
  2. В иноязычной литературе встречается альтернативное определение кориолисового ускорения с противоположным знаком: . В таком случае кориолисово ускорение и кориолисова сила оказываются связаны соотношением: [8][9][10][11]. В рамках такого определения кориолисово ускорение является частью ускорения тела в неинерциальной системе отсчёта .

Теорема Кориолиса

Пусть точка совершает сложное движение: движется относительно неинерциальной системы отсчёта   со скоростью  ;  система   при этом сама движется относительно инерциальной системы координат  , причём линейная скорость движущегося вместе с ней полюса   равна ,  а угловая скорость системы   равна  .

Тогда абсолютная скорость рассматриваемой точки (то есть её линейная скорость в инерциальной системе координат) будет такой:

 ,  причём   ,

где  — радиус-вектор точки относительно полюса  .  Первые два слагаемых в правой части равенства представляют собой переносную скорость точки, а последнее — её относительную скорость.

Продифференцируем это равенство по времени:

Найдём значение каждого слагаемого в инерциальной системе координат:

где  — линейное ускорение точки относительно системы  ,   — угловое ускорение системы  .

Таким образом, имеем:

Полученное равенство служит математическим выражением теоремы КориолисаАбсолютное ускорение точки в сложном движении равно геометрической сумме её переносного ускорения (сумма первых трёх слагаемых в правой части), относительного ускорения (четвёртое слагаемое) и добавочного кориолисова ускорения (последнее слагаемое), равного   .

Используя обозначения и , получим запись теоремы Кориолиса в более сжатом виде:

Причиной возникновения кориолисова ускорения является взаимное влияние друг на друга переносного и относительного движений.

Сам Кориолис выражал в 1835 г. свои результаты в иной форме, вводя в рассмотрение переносную и кориолисову силы инерции; общепринятая же ныне чисто кинематическая формулировка теоремы Кориолиса предложена в 1862 г. Анри Эме Резалем[12].

Заметим, что если система   также является неинерциальной и движется относительно другой системы, а та другая относительно следующей и т. д., то величины , для системы   в последнем уравнении следует считать полными — то есть как сумму собственных ускорений (скоростей) всех систем координат (каждой относительно предыдущей), начиная с первой подвижной системы, а  — абсолютным ускорением поступательного движения   относительно неподвижной инерциальной системы координат.

Заметим также, что в частности, чтобы точка относительно неинерциальной системы отсчёта двигалась прямолинейно по радиусу к оси вращения (см. рис.), необходимо приложить к ней силу, которая будет противодействующей суммы Кориолисовой силы , переносной вращательной силы и переносной силы инерции поступательного движения системы отсчёта . Составляющая же ускорения не отклонит тело от этой прямой, так как является осестремительным переносным ускорением и всегда направлена по этой прямой. Действительно, если рассматривать уравнение такого движения, то после компенсации в нём вышеупомянутых сил получится уравнение , которое если умножить векторно на , то с учетом получим относительно дифференциальное уравнение , имеющее при любых и общим решением , которое и является уравнением такой прямой — .

Обсуждение

Правило Жуковского

Н. Е. Жуковский предложил удобный способ нахождения кориолисова ускорения:

Ускорение Кориолиса можно получить, спроецировав вектор относительной скорости точки на плоскость, перпендикулярную вектору переносной угловой скорости , увеличив полученную проекцию в раз и повернув её на 90 градусов в направлении переносного вращения.

Физический смысл

Пусть точка движется со скоростью вдоль прямой к центру координат инерциальной системы отсчёта (см. рис.).

Тогда данное движение приведёт к изменению расстояния до центра вращения и, как следствие, абсолютной скорости движения точки неинерциальной системы отсчёта, совпадающей с движущейся точкой — её переносной скорости.

Как мы знаем, эта скорость движения равна

Данное изменение будет равно:

Проведя дифференцирование по времени, получим (направление данного ускорения перпендикулярно и ).

С другой стороны, вектор для точки, остающейся неподвижной относительно инерциального пространства, повернётся относительно неинерциального на угол . Или приращение скорости будет

при соответственно второе ускорение будет:

Общее ускорение будет Как видно, система отсчёта не претерпела изменения угловой скорости Линейная скорость относительно неё не меняется и остаётся Тем не менее, ускорение не равно нулю.

Если тело движется перпендикулярно направлению к центру вращения, то доказательство будет аналогичным. Ускорение из-за поворота вектора скорости останется а также прибавляется ускорение в результате изменения центростремительного ускорения точки.

Сила Кориолиса и закон сохранения момента импульса

Если вращающаяся лаборатория, принимаемая за неинерциальную систему отсчёта, имеет конечный момент инерции, то в соответствии с законом сохранения момента импульса при движении тела по радиусу, перпендикулярному оси вращения, угловая скорость вращения будет увеличиваться (при движении тела к центру) или уменьшаться (при движении тела от центра). Рассмотрим эту ситуацию с точки зрения неинерциальной системы.

Хорошим примером может быть человек, который перемещается в радиальном направлении по вращающейся карусели (например, держась за ведущий к центру поручень). При этом с точки зрения человека он при движении к центру будет совершать работу против центробежной силы (эта работа пойдёт на увеличение энергии вращения карусели). На него также будет действовать сила Кориолиса, которая стремится отклонить его движение от радиального направления («сносит» его вбок), и противодействуя сносу (прилагая поперечное усилие к поручню), он будет раскручивать карусель.

При движении от центра центробежная сила будет совершать работу над человеком (за счёт уменьшения энергии вращения), а противодействие силе Кориолиса будет тормозить карусель.

Сила Кориолиса в природе и технике

Сила Кориолиса, вызванная вращением Земли, может быть замечена при наблюдении за движением маятника Фуко[13].

В Северном полушарии приложенная к движущемуся поезду сила Кориолиса направлена перпендикулярно рельсам, имеет горизонтальную составляющую и стремится сместить поезд вправо по ходу движения. Из-за этого реборды колёс, расположенных по правой стороне поезда, оказываются прижаты к рельсам.

Кроме того, поскольку сила Кориолиса приложена к центру масс каждого вагона, то она создаёт момент силы, из-за которого возрастает нормальная сила реакции, действующая на колёса со стороны правого рельса в направлении, перпендикулярном поверхности рельса, и уменьшается аналогичная сила, действующая со стороны левого рельса. Понятно, что в силу 3-го закона Ньютона сила давления вагонов на правый рельс также больше, чем на левый[14].

На одноколейных железных дорогах поезда обычно ходят в обоих направлениях, поэтому последствия действия силы Кориолиса оказываются одинаковыми для обоих рельс. Иначе обстоят дела на двухколейных дорогах. На таких дорогах по каждой колее поезда движутся только в одном направлении, вследствие чего действие силы Кориолиса приводит к тому, что правые по ходу движения рельсы изнашиваются сильнее, чем левые. Очевидно, что в Южном полушарии из-за изменения направления силы Кориолиса больше изнашиваются левые рельсы[15]. На экваторе эффект отсутствует, поскольку в этом случае сила Кориолиса направлена вдоль вертикали или — при движении вдоль меридиана — равна нулю.

Кроме того, сила Кориолиса проявляется и в глобальных масштабах. В Северном полушарии сила Кориолиса направлена вправо по ходу движения тел, поэтому правые берега рек в Северном полушарии более крутые — их подмывает вода под действием этой силы[16] (см. Закон Бэра). В Южном полушарии всё происходит наоборот. Сила Кориолиса ответственна также и за вращение циклонов и антициклонов[17] (см. геострофический ветер): в Северном полушарии вращение воздушных масс происходит в циклонах против часовой стрелки, а в антициклонах — по часовой стрелке; в Южном — наоборот: по часовой стрелке в циклонах и против — в антициклонах. Отклонение ветров (пассатов) при циркуляции атмосферы — также проявление силы Кориолиса.

Силу Кориолиса необходимо учитывать при рассмотрении планетарных движений воды в океане. Она является причиной возникновения гироскопических волн[18].

При идеальных условиях сила Кориолиса определяет направление закручивания воды например, при сливе в раковине. Однако идеальные условия трудно достижимы. Поэтому феномен «обратного закручивания воды при стоке» является скорее околонаучной шуткой.

См. также

Примечания

  1. Фрейман Л. С. К истории доказательства теоремы Кориолиса // Труды института истории естествознания и техники / Гл. ред. Н. А. Фигуровский. — М.: АН СССР, 1956. — Т. 10. — С. 213—244.
  2. Sur les équations du mouvement relative des systèmes de corps (фр.) // Journ. Ecole polytechn. — 1835. — Vol. 15. — № 24. — P. 142—154.
  3. Further Coriolis correlation considerations (англ.) // 10.1063/PT.3.1195
  4. Тарг С. М. Краткий курс теоретической механики. — М.: Высшая школа, 1995. — С. 156. — 416 с. — ISBN 5-06-003117-9.
  5. Кориолиса ускорение // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 461. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
  6. Хайкин С. Э. Силы инерции и невесомость. — М.: «Наука», 1967. — С. 163—164.
  7. N. de Nevers Air Pollution Control Engeneering. — 2. — The MkGraw-Hill Companies, Inc., 1999. — С. 88. — 586 с. — ISBN 0-07-039367-2.
  8. Bela G. Liptak Flow Measurement. — CRS Press, 1993. — С. 51. — 211 с. — ISBN 0-8019-8386-X.
  9. A. Berthoz, Werner Graf, Pierre Paul Vidal The Head-neck Sensory Motor System. — 1. — Oxford University Press, 1992. — С. 216. — 748 с. — ISBN 0-19-506820-3.
  10. E. Brinckmann Biology in Space and Life on Earth: Effects of Spaceflight on Biological Systems. — 1. — Heppenheim: Wiley-VCH, 2007. — С. 30. — ISBN 978-3-527-40668-5.
  11. Веселовский И. Н.  Очерки по истории теоретической механики. — М.: Высшая школа, 1974. — 287 с. — С. 203—204.
  12. Сила Кориолиса
  13. Матвеев А. Н. Механика и теория относительности. — Издание 2-е, переработанное. — М.: Высш. шк., 1986. — С. 167. — 320 с. — 28 000 экз.
  14. Хайкин С. Э. Силы инерции и невесомость. — М.: «Наука», 1967. — С. 161—163.
  15. Краткая географическая энциклопедия. Закон Бэра
  16. Ванна и закон Бэра // Квант. — 2003. — № 3. — С. 13.
  17. Научная Сеть. Колебания и волны. Лекции.

Сила Кориолиса.

© 2023 dom-uslugi66.ru, Россия, Ангарск, ул. Набережная 59, +7 (3951) 35-50-52